Effect of natural antioxidants and important herbal medicines on blood infections and sepsis: A systematic review

Hamid Reza Sherkatolabbasieh,1 Afshin Hasanvand,2 Saber Abbaszadeh,3,4 Behrooz Farzan*5

1Department of Pediatric Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
2Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
3Hepatitis Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
4Department of Anesthesiology, Lorestan University of Medical Sciences, Khorramabad, Iran

ABSTRACT

Phytochemical and pharmaceutical studies have shown that medicinal plants are rich sources of antioxidant and biologically active compounds. The medicinal plants can have inhibitory effects on various types of parasitic diseases, microbial infections, blood infections, and sepsis. This review was done to report important medicinal plants effective on the prevention and treatment of blood infections and sepsis. Based on the results obtained from the review of numerous articles, indexed in the databases Information Sciences Institute, Scopus, PubMed, and Google Scholar etc., the most important medicinal plants effective in the treatment and prevention of sepsis and parasitic, microbial, and viral blood infections are Veronica officinalis, Allium sativum, Paeonia lactiflora, Angelica Sinensis, Hippophae rhamnoides, Melissa officinalis, Ziziphus Spina-Christi, Astragalus species, Salvia miltiorrhiza, Rheum palmatum, Sophora flavescens, Scutellaria species, Phyllanthus amarus, Calendula officinalis, Scrophularia striata, Lawsonia inermis, Artemisia species, and Plantago major. Sterolic, luteolin, tannins, quercetin, saponins and some other bioactive ingredients are the most important bioactive compounds and flavonoids of these medicinal plants that may be used in producing new antiblood infections and anti-sepsis drugs.

*Corresponding Author
Name: Behrooz Farzan
Email: b_farzan41@yahoo.com

ISSN: 0975-7538
DOI: https://doi.org/10.26452/ijrps.v10i2.546

Production and Hosted by Pharmascope.org © 2018 Pharmascope Publications. All rights reserved.

INTRODUCTION

Blood infections are caused due to infection-induced influence on the immune response. This infection in most cases is caused by a bacterium, but it can also occur by other agents such as fungi, viruses or parasites (Hellman 2015; Rhodes et al., 2017; Ke et al., 2017). In ICU patients, the incidence of sepsis is very variable, and their mortality rate is from 20% for sepsis, up to 40% for severe sepsis and up to 60% for septic shock. Different microbes such as bacteria, viruses, parasites or fungi can lead to the development of severe infections that can lead to blood infections. In newborns and infants, the causative agents of this condition are usually bacteria. An acute blood infection is referred to as sepsis. In fact, sepsis is a dangerous disease in which the body struggles with a severe infection that spreads through the bloodstream (Gotts and Matthay 2016; Levy et al., 2019). Diseases such as lung infection, bladder infection, kidney infection (Hadian et al., 2018), skin infections, abdominal infections (such as appendicitis), bone infection and brain infections (such as meningitis) can also lead to sepsis in the body. Infections that develop after surgery can also lead to sepsis. Due to the increased use of antibiotics for diseases that are viral and do not require antibiotics, many bacteria have acquired resistance to antibiotics. This
has made it difficult to treat blood infection. When blood infection is difficult to be treated, it leads to death (Jin and Pan 2017; Mohseny et al., 2018). Sepsis, severe sepsis, and septic shock are used to describe the body’s response to infection. Systemic inflammatory response syndrome (SIRS) is a systemic response that is characterized by fever, tachycardia, and leukocytosis, which is briefly referred to as SIRS. When SIRS occurs in a patient with suspected infection, he/she contracts sepsis (Hartman et al., 2013; Singer et al., 2017; Seymour et al., 2016). If hypotension in response to fluids or dysfunction of the organs farther from the site of infection occurs, severe sepsis is developed, and if the acidosis of lactic acid, impairment of blood supply to the vital organs of the body, or hypotension without response to fluids occurs, septic shock is developed. The incidence of sepsis has increased over the past 15 years (Hartman et al., 2013; Rhodes et al., 2016). One of the complications and problems associated with sepsis is the imbalance of antioxidant defense system and the level of oxidative stress in the body, both of which occur in sepsis and lead to oxidative stress (Bozza et al., 2013; Gelain et al., 2011; von Dessauer et al., 2011). Medicinal plants have antioxidant activities and can balance the antioxidant defense system (Hosseini et al., 2017; Mohsenzadeh et al., 2016; Kooti et al., 2014). The present review was done to report important effective medicinal plants for the prevention and treatment of blood infections and sepsis.

Based on our literature search, the most important medicinal plants that were addressed in this review are somehow effective in treating and preventing sepsis and parasitic, microbial and viral blood infections (Table 1). Certain medicinal plants such as Veronica officinalis, Allium sativum, Paeonia lactiflora, Angelica sinensis, Hippophae rhamnoides, Melissa officinalis, Ziziphus spinacristi, Astragalus species, Salvia miltiorrhiza, Rheum palmatum, Sophora flavescens, Scutellaria species, Phyllanthus amarus, Calendula officinalis, Scrophularia striata, Lawsonia inermis, Artemisia species, and Plantago major are effective for the prevention and treatment of these diseases.

Veronica officinalis

This plant is from the Plantaginaceae family and is commonly called gypsyweed. Total alcoholic extract, if administered at 10 ml/kg per day, is effective in improving kidney function and creatinine clearance, reducing the pro-inflammatory chemical mediators in the lung such as IL-8 and IL-6, and inhibiting prostaglandin 2 and COX-2 expression by responding to inflammatory stimuli via mitogen-activated protein kinase or NF-kB (Gouveia et al., 2016).

Allium sativum

This plant is from the Amaryllidaceae family and is commonly called garlic. Methanolic extract inhibits TNFα induced by LPS in macrophages. Its active ingredient is sucrose methyl 3-formyl-4-methyl pentanoate (SMFM) that at a dose of 200 μg/ml, has antiseptic activity, increases bacterial activity, inhibits leukocyte apoptosis in the spleen and pro-inflammatory cytokines, and can also inhibit damage and inflammation of the lung by its bacterialid properties, and block the production of pro-inflammatory cytokines such as TNF-α, IL-6, IL-1β (Lee et al., 2015).

Paeonia lactiflora

This plant is from the Paeoniaceae family and is commonly called garden peony. The root of this plant at a dose of 100mg/ml inhibits the uncontrolled release of inflammatory mediators, reduction of excessively intrinsic immune responses, reduction of the relationship of inflammation and coagulation, and protection of endothelial cells effective on the brain that are used to treat brain disorders in people with sepsis (Zhang et al., 2018).

Angelica Sinensis

This plant belongs to the Apiaceae family and is commonly called Dong Quai. Aqueous extract - daily 5-50 g - for each individual with a mean weight of 75 kg reduces the endotoxin-induced release of HMGB1 in macrophage environment through involving in cytoplasmic translocation and reducing the induction of the release of inflammation-mediating endotoxins such as nitric oxide and TNF. It is also effective on macrophages (Wang et al., 2006).

Hippophae rhamnoides

This plant is from the Elaeagnaceae family and is commonly called sea buckthorn. The ethanolic extract from the leaves of this plant at a dose of 50 mg/ml is effective on macrophages isolated from the blood. This plant has an antiviral property that is due to decreased TNF-a and increased IFN-γ (Jain et al., 2008).

Melissa officinalis (Lemon balm)

This plant is from the Lamiaceae family and is commonly called balm. Ethanolic extract of its leaf at a dose of 100 mg/kg, is effective on sepsis-induced infectious disorders in rodents (Eudes Filho et al., 2017).
Table 1: The most important medicinal plants effective in the treatment and prevention of sepsis and parasitic, microbial, and viral blood infections

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Active ingredients</th>
<th>Plant figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veronica officinalis</td>
<td>phenolic, sterolic, luteoline, hispid (Gouveia et al., 2016)</td>
<td></td>
</tr>
<tr>
<td>Allium sativum</td>
<td>sucrose methyl 3-formyl-4-methylpentanoate (SMFM) (Le et al., 2015)</td>
<td></td>
</tr>
<tr>
<td>Paeonia lactiflora</td>
<td>Cis-epsilon-viniferin, trans-resveratrol, trans-resveratrol-4’-O-beta-D-glucopyranoside, trans-epsilon-viniferin (Zhang et al., 2018)</td>
<td></td>
</tr>
<tr>
<td>Angelica sinensis</td>
<td>Phytosterols, ligustilide, butylphthalalde, p-cymene, ferulate, flavonoids (Wang et al., 2006)</td>
<td></td>
</tr>
<tr>
<td>Hippophae rhamnoides</td>
<td>Flavonols, phenolic acids, quercetin (Jain et al., 2008)</td>
<td></td>
</tr>
<tr>
<td>Melissa officinalis</td>
<td>tannins, terpenes, alpha-humulene, beta-bourbonene (Eu-des Filho et al., 2017)</td>
<td></td>
</tr>
</tbody>
</table>

Ziziphus spina-christi

This plant is from the Rhamnaceae family and is commonly called Christ’s thorn jujube. It contains flavonoids (quercetin) and saponin, such as betulinic acid and triterpenoid sapogenins, has antibacterial and antiviral properties. The methanolic extract of its leaves at 100, 200, or 300 mg/kg prevents liver and spleen damage and reduces the inflammatory mediators and cytokines, and the oxidative stress, and increases the antioxidant defense system, catechin, epicatechin, epigallocatechin, and gallocatechin, present in this plant, have
Behrooz Farzan et al., Int. J. Res. Pharm. Sci., 10(2), 1372-1381

The potent anti-inflammatory and hepatoprotective effects. Some of its compounds are involved in the NF-kB and MAPK pathways. It also inhibits TNFα and IL-1β in the liver and spleen by inhibiting translocation of NF-kB from the cytoplasm into the nucleus (Dkhil et al., 2018).

Astragalus species
This plant is from the Fabaceae family and is commonly called Milkvetch. *Radix astragali* (Huangqi) is derived from the root of *Astragalus membranaceus*. It is useful for the treatment of immune disorders and liver diseases. The plant contains flavonoids and saponin, and the active ingredients in its

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Active ingredients</th>
<th>Plant figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziziphus spina-christi</td>
<td>Quercetin, saponin, betulinic acid (Dkhil et al., 2018)</td>
<td></td>
</tr>
<tr>
<td>Astragalus</td>
<td>Isoflavonoids and Astragalosides (Cui et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>Salvia miltiorrhiza</td>
<td>tanshinone I, tanshinone IIA (Cui et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>Rheum palmatum</td>
<td>rutin, ferulic acid, α-tocopherol (Cui et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>Sophora flavescens</td>
<td>Oxymatrine (Cui et al., 2010)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: The most important medicinal plants effective in the treatment and prevention of sepsis and parasitic, microbial, and viral blood infections (Contd....)

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Active ingredients</th>
<th>Plant figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scutellaria</td>
<td>Wogonin (Cui et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>Phyllanthus amarus</td>
<td>Alkaloids, flavonoids, lactones, steroids, triterpenes, lignans, tannins (Cui et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>Calendula officinalis</td>
<td>Flavon glycosides, saponins, sesquiterpene glycoside (Maspí et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>Scrophularia striata</td>
<td>Scrophuloside A, Harpadoside B, 5-hydroxyloganin, 8-O-acetylharpagide, Verbascoside (Naserifard et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>Lawsonia inermis</td>
<td>Quercetin and lalioside (Behdani et al., 2009)</td>
<td></td>
</tr>
</tbody>
</table>

extract inhibits the secretion of HBsAg and HBeAg at 100 μg/mL and HBsAg at 120 mg/kg and is, therefore, effective to treat chronic viral hepatitis and septicemia (Cui et al., 2010).

Salvia miltiorrhiza

This plant is from the Lamiaceae family and is commonly called Chinese sage. Both hydrophilic and hydrophobic fractions of this plant have biological...
effects; its aqueous solution inhibits HBV secretion with an IC50 of 4.17 μg/ml and suppresses the expression of HBsAg and HBeAg with an IC50 of 3.94 at 2.46 μg/mL (Cui et al., 2010).

Rheum palmatum

This plant is from the Polygonaceae family and is commonly called rhubarb. The extract of this plant is used to treat gastroenteritis and liver disease. It can also inhibit coxsackievirus and herpes simplex virus, and its oil inhibits expression of HBV Ag (HBsAg and HBeAg).

The aqueous extract of this plant reduces HBV concentration and inhibits the secretion of HBsAg and HBV DNA polymerase activity, and has an antiviral effect against hepatitis B virus.

The ethanolic extract also inhibits the production of HBV DNA and the expression of HBsAg in a dose-dependent manner. Its active ingredient is chrysophanol 8-O-β-D-glucoside that with an IC50 of 36.98 μg/mL and at 237.4 μg/mL, exhibits activity against HBV DNA production (Cui et al., 2010).

Sophora flavescens

This plant is from the Fabaceae family and is commonly called sophora. Oxymatrine is an alkaloid isolated from the root of Sophora flavescens that has antiviral, antifibrotic, hepatoprotective, and immunomodulatory activities, especially against HBV. Oxymatrine at 1,000 μg/mL inhibits the production of HBV DNA and secretion of HBsAg and HBeAg. It also reduces the concentration of intrahepatic HBsAg, HBeAg and HBCAg in transgenic mice and results in the negativity of intrahepatic HBsAg, HBeAg and HBCAg at a dose of 200 mg/kg treated for 30 days (Cui et al., 2010).

Scutellaria species

This plant is from the Lamiaceae family and is commonly called skullcaps. Wogonin is a non-flavonoid derived from this plant used to treat inflammation and infectious diseases, has antiviral activity, suppresses HBsAg secretion with IC50 of 4 μg/mL, reduces HBV DNA levels, and inhibits the DHBV DNA polymerase with IC50 of 0.57 μg/mL (Cui et al., 2010).

Phyllanthus species

This plant is from the Phyllanthaceae family and is commonly called a stone breaker. The ethanolic extract of this plant affects chronic kidney disease and serves as an antiviral at a concentration of 100 μg/ml, and has an IC50 of 50 for HBsAg greater than 200 μg/mL. It contains compounds such as alkaloids, flavonoids, lactones, steroids, triterpenes, lignans, and tannins. The ethanolic extract of this plant produces suppressive effects on the secretion of HBsAg, the expression of HBsAg mRNA, and the proliferation of HBV, thereby treating the viral infection of the blood (Cui et al., 2010).

Calendula officinalis

This plant is from the Asteraceae family and is commonly called marigold. The extract of this plant at a concentration of 500 mg/ml reduced all parasites and at low concentrations, LD50 of 17 mg/ml for alcoholic extract and 215 mg/ml for aqueous extract, exhibited anti-leishmania and antiparasitic activities that reduce parasitic infection of the blood (Maspi et al., 2010).

Scrophularia striata

This plant is from the Scrophulariaceae family and is commonly called Snapdragon. At the concentration of 10 mg/ml, the drug was controlled, and at
the concentration of 25 mg/ml of the extract, on the third day, the complete elimination of L. major amastigotes in macrophages occurred. The percentage of contaminated macrophages is decreased by increasing the concentration of the extract, thereby reducing the parasitic infection in the bloodstream and subsequently reducing sepsis (Naserifar et al., 2013).

Lawsonia inermis

This plant is from the Lythraceae family and is commonly called Hina, and the aqueous and ethanolic extracts of the leaves of this plant exhibit a wide range of antimicrobial properties, so that the hina ethanolic and aqueous extracts were used against S. aureus bacteria. The MICs of the aqueous and ethanolic extracts were obtained 2.5 and 3 mg/ml, respectively. The aqueous extracts at 7.5 mg/ml can inhibit the growth of all 25 isolates of S. aureus. The ethanolic extract at 7.5 mg/ml prevents the growth of all isolates of S. aureus (Behdani et al., 2009).

Artemisia species

This plant belongs to the Asteraceae family and is commonly called mugwort. It is effective for the treatment of rheumatoid arthritis, dermatitis and sepsis. This plant inhibits TNF-α release by stimulating macrophage LPS by regulating the activity of MAPK and NF-κB. The ethanolic extract at 150-300 mg/kg protects the body against lethal endotoxins and suppresses the expression of TNF-α mRNA in the liver and lungs. It also inhibits expression of TNF-α, IL-1β and COX-2, and phosphorylation of MAPK, and also inhibits the activity of NF-κB and phosphorylation of IκBα (Sun et al., 2006).

Plantago major

Which is Plantaginaceae family with the generic name of the larger plantain, the highest diameter of the non-growth of the aqueous and ethanolic extracts of large leafy leaves in 80 mg concentration was due to Staphylococcus aureus, with a minimum inhibitory concentration of aqueous plaque extract for Staphylococcus aureus 25 mg/ml, for ethanolic extract, it was 12.5 mg/ml. The minimum bactericidal concentrations of aqueous and ethanolic extracts for S. aureus were obtained 50 and 25 mg/ml (Akinyemi et al., 2005).

Turmeric, lemon, green tea, garlic, oak, and rosemary are the other medicinal plants that have been reported to be effective on blood infections and sepsis.

Turmeric is known as one of the traditional and herbal drugs for various types of health issues, including blood infections. Curcumin present in turmeric is very suitable for increasing blood protein levels. Increasing blood protein in the body can stop various types of infections. Turmeric is also very useful to prevent inflammation (Niranjan and Prakash 2008; Prasad and Tyagi 2015; Yang et al., 2013).

Lemon is a rich source of vitamin C, which can be very effective in the treatment of blood infections. Lemon boosts the immune function of the body. It also inhibits the growth of bacteria and helps detoxify the blood (Briggs 2018; Mshelia 2018).

Research has demonstrated green tea is very effective in treating blood infections. Green tea has compounds that can inhibit bacteria (Li et al., 2012; Wheeler et al., 2007).

Garlic is one of the best vegetables that can be widely used to treat many diseases. It is also one of the most suitable treatments for blood infections because it contains a substance called allicin that fights the infectious and toxic bacteria of the blood. It also greatly boosts the immune system (Ayaz and Alpsoy 2007; Bakri and Douglas 2005; Salman et al., 1995).

Oak has highly potent antioxidant and antibacterial properties. The palm and leaves of the oak tree contain tannins, malic acid, quercetin, pectin, resin and oil. It exerts strong effects on the reduction and treatment of bacterial and infectious diseases (Chahardooli and Khodadadi 2014; Deryabin et al., 2015).

Rosemary is an anti-inflammatory and antibacterial plant and is there used in the treatment of various types of infections. The easiest way to use rosemary properties is to use its essential oil (Luqman et al., 2007; Jiang et al., 2011; Issabeagloo et al., 2012; Ojeda-Sana et al., 2013).

The most important bioactive compounds and flavonoids of these medicinal plants that are effective on sepsis include sterolic, luteolene, sucrose methyl 3-formyl-4-methylpentanoate (SMFM), Cis-epi-son-viniferin, trans-resveratrol, trans-resveratrol-4′-O-beta-D, glucopyranoside, trans-epi-silviniferin, phytosterols, ligustilide, butylyphthalide, tannins, terpenes, α-humulene, β-bourbonene, quercetin, saponin, betulinic acid, iso flavonoids, astragalosides, tashinnone I, tashinnone IIa, rutin, ferulic acid, α-tocopherol, oxytramine, wogonin, alkaldoids, lactones, steroids, triterpenes, lignans, tannins, sesquiterpene glucoside, scrophuloside A, allantoin, aucubin, ursolic acid, asperuloside etc.

Sepsis actually occurs when the primary responsibility of the host is reinforced by an infection and ultimately is dysregulated. This leads to an imbalance between the pro-inflammatory responses and the anti-inflammatory responses. In physiological conditions, there is a balance between the formation of oxidative species and their elimination.
by antioxidant compounds (Lorente et al., 2015; Nagar et al., 2018). Oxidative stress is caused when this balance is disturbed by the production of a large amount of ROS free radicals or the weakness of the antioxidant defense system. The use of medicinal herbs and natural antioxidants has the greatest therapeutic effects on the antioxidant system and elimination of free radicals (ROS and NOS) (Moradi et al., 2018; Naserifar et al., 2017; Tajalai-Aasl et al., 2017).

The presence of phenolic and antioxidant compounds in various organs of these medicinal plants cause strong antioxidant, anti-inflammatory, anti-spasmodic, antiseptic and antimicrobial effects (Parsaei et al., 2016; Rouhi-Boroujeni et al., 2016; Van Vuuren 2008). Actually, medicinal plants introduced in this review can be used as complementary medicines because of the presence of antimicrobial and antiviral compounds, bioactive ingredients, phenols, flavonoids, etc.

CONCLUSION

Medicinal plants and natural antioxidants can have antimicrobial, antiviral and antiparasitic effects due to bioactive ingredients and strong antioxidants that they produce, and therefore can be used as natural antibacterial drugs. The results of our review indicated that the function of these plants might be due to their active compounds and active flavonoids such as tannins, terpenes, α-humulene, β-bourbonene, quercetin, saponin, betulinic acid, isoflavonoids, allantoin, aucubin, ursolic acid, asperuloside etc. In the clinical trials, these have to be evaluated on blood infections and sepsis to can be considered new candidates for producing effective drugs.

Authors’ contributions

All authors all contributed equally in planning and carrying out this study. All authors read the manuscript and confirmed the publication for the final version.

Conflict of interest: None.

Ethical considerations: Not applicable.

Funding/Support: There is no financial support for this work.

REFERENCES

