Evaluation of antioxidant property and anticancer prospective of the leaf extract and biofractions of *Bauhinia foveolata* Dalzell – A native of the Indian Western Ghats

Liesl Maria Fernandes e Mendonça¹, Arun B. Joshi², Anant V. Bhandarkar², Himanshu Joshi³

¹Department of Pharmacology, Goa College of Pharmacy, 18th June Road, Panaji, Goa – 403001 India
²Department of Pharmacognosy and Phytochemistry, Goa College of Pharmacy, 18th June Road, Panaji, Goa – 403001 India
³Department of Pharmacology, College of Pharmacy, Graphic Era Hill university, Bhimtal campus, Uttarakhand – 263156 India

Article History:
Received on: 03 Mar 2021
Revised on: 01 Apr 2021
Accepted on: 09 Apr 2021

Keywords:
DPPH (2-2-diphenyl-1-picrylhydrazyl), Hydrogen peroxide, MCF-7 cells, Nitric oxide, Sulforhodamine B

ABSTRACT

The current study was designed to evaluate the antioxidant and anticancer potential of ethanolic leaf extract of *Bauhinia foveolata* Dalzell. (EEBF) and its toluene, ethyl acetate and methanolic biofractions viz., TFBF, EFBF and MFBF. Phytoconstituents were screened by adopting established procedures. Total phenolic and flavonoid content were assessed spectrophotometrically. *In vitro* antioxidant activity was assayed using DPPH (2,2-diphenyl-1-picrylhydrazyl), hydrogen peroxide and nitric oxide as free radicals, whereas anticancer activity was evaluated using sulforhodamine B assay. EEBF showed maximum phenolic content of 49.12±0.31 mg GAE/g and flavonoidal content of 28.75±0.42 mg QUE/g, than its biofractions. EEBF showed considerable antioxidant activity with IC₅₀=19.04±0.24 µg/mL and IC₅₀=65.85±1.22 µg/mL when compared to the standards Ascorbic acid (IC₅₀=12.06±0.05 µg/mL) and Gallic acid (IC₅₀=64.65±0.72 µg/mL) in DPPH and nitric oxide scavenging assays, respectively. MFBF showed significant activity with IC₅₀=26.76±0.75 µg/mL in hydrogen peroxide scavenging assay compared to the standard Gallic acid (IC₅₀=76.60±1.31 µg/mL). TFBF showed favourable growth inhibition of MCF-7 cells with GI₅₀=73.5±11.96 µg/mL when compared to other samples screened (GI₅₀>80 µg/mL) as against the standard Adriamycin (GI₅₀<10 µg/mL) in SRB assay. The therapeutic virtues of EEBF and MFBF as free radical scavengers and TFBF as an antiproliferative may be attributed to the phenolics, flavonoids, steroids and triterpenoids present.

INTRODUCTION

Reactive free radicals contribute to oxidative stress in the living cells by damaging the lipids, proteins, DNA and other macromolecular components (Pham-Huy et al., 2008). Altered cellular changes and excitotoxicity play a specific feature in the pathogenesis of degenerative diseases like cancer, cardiovascular diseases, neurodegenerative disorders, cataract and inflammation (M. et al., 2020). Cancer is a life-threatening disease that can potentially diminish the quality of life of an individual. Breast cancer is a growing concern nowa-
days, as it is a leading cause of cancer-related mortalities amongst women worldwide (Malvia et al., 2017; Mathur et al., 2020). It can be clinically sub-classified based on the underlying molecular mechanisms viz., gene expression and receptor status (estrogen receptor [ER], progesterone receptor [PR], human epidermal growth factor receptor 2 [HER2]) and proliferation status (Medeiros and Allan, 2019). Constant research is being carried out to identify agents that may help alleviate the symptoms and treat breast cancer.

Consumption of antioxidant-rich food helps to minimize the chances of the development of degenerative diseases (Do et al., 2014). Potential free radical scavengers may thus help reduce cell death.

Plants rich in essential phytoconstituents are being extensively investigated for their medicinal potential to treat various ailments. Several species of the genus Bauhinia are widely distributed across Africa, Asia and South America and have been used frequently in folk medicine to treat different kinds of pathologies (Filho, 2009). Bauhinia foveolata Dalzell. (family Leguminosae) is usually found along the Western Ghats of India. The tree is dioecious and grows to a height of about 30 meters. Leaves are suborbicular to broadly ovate and pubescent beneath numerous closely situated fine pits within areolae of reticulations (Bandyopadhyay et al., 2005). The synonyms of B. foveolata are Bauhinia lawii Baker and Piliostigma foveolatum (Dalzell) Thoth, and its common name is Pore leaved Bauhinia. Its leaves are possibly the largest among all Bauhinia species found in India, and its scientific name foveolata is due to the presence of minute pores (foveoli) on the underside of the leaves (Bandyopadhyay et al., 2005; Habbu et al., 2020). Very few studies have been documented on B. foveolata Dalzell. A recent study reported the isolation of quercetin and odoratin-7-glucoside from butanol fraction of ethanolic leaf extract of B. foveolata that exhibited cytotoxicity towards the human colon cancer cell lines, HT-29 and HCT-15 (Habbu et al., 2020). The acetone and ethyl acetate extracts of B. foveolata bark reported antibacterial and antimalarial activities, respectively (Gamit et al., 2018). The commonly found species of Bauhinia in India have reported antioxidant, antimicrobial and cytotoxic effects (Mishra et al., 2013; Vijayan et al., 2019).

Thus, the current study was focused on evaluating the antioxidant and anticancer potential of the ethanolic leaf extract of B. foveolata Dalzell. (EEBF) and its toluene, ethyl acetate and methanol soluble fractions, i.e., TFBF, EFBF and MFBF by in vitro assays.

MATERIALS AND METHODS

Chemicals and reagents

High purity analytical grade solvents and chemicals were used for the study. Folin ciocaltneau reagent, aluminum chloride, DPPH, sodium nitroprusside, ferrous ammonium sulfate, and sulphanilamide were purchased from Molychem (Mumbai, India). 1,10-phenanthroline and hydrogen peroxide solution were purchased from Merck (Bangalore, India). Naphthyethylene diamine was procured from Qualigens (Mumbai, India). Reference standards were procured from Sigma-Aldrich (St. Louis, Mo., USA).

Instrumentation

A double beam UV-Vis spectrophotometer (LABINDIA Analytical UV 3092) was used for spectroscopic analysis.

Plant material

Fresh leaves of B. foveolata were collected from the forests of Dandeli, Karnataka – India, in the months of August-September 2017. They were washed to remove the extraneous matter and then dried. Dr. Satyanarayan S. Hebbar, Department of Botany, Government Pre university college, Dharwad, Karnataka, authenticated the specimen (GCPDOP-07) which was then deposited in the Department.

Preparation of experimental samples

The experimental samples consisted of the ethanolic leaf extract of B. foveolata (EEBF) and its three biofractions viz., toluene soluble fraction of EEBF (TFBF), ethyl acetate soluble fraction of EEBF (EFBF) and methanol soluble fraction of EEBF (MFBF).

Preparation of the ethanolic leaf extract of B. foveolata (EEBF)

1.5 kg of powdered leaves were defatted by refluxing with 3.5 L of Petroleum ether thrice. The defatted drug (900g) was refluxed with absolute ethanol (4.5L) for 90 minutes, thrice. The alcoholic extract was filtered using the Whatmann filter paper (No.1). The solvent from the extract was distilled off using a rotary evaporator and air-dried to yield the dry extract (79.14g). The ethanolic extract of B. foveolata (EEBF) was stored at 4°C until further processed.

Preparation of biofractions of EEBF

20 g of EEBF was refluxed successively with toluene, ethyl acetate and methanol and filtered using Whatmann filter paper (No.1). The solvent was distilled off using a rotary evaporator and the toluene, ethyl acetate and methanol soluble fractions of the
ethanolic leaf extract of *B. foveolata* viz., TFBF (5.14g), EFBF (3.36g) and MFBF (6.91g) were successively obtained and stored at 4°C unil further used (Figure 1).

Qualitative phytochemical screening

The experimental samples (EEBF, TFBF, EFBF and MFBF) were screened to detect the phytoconstituents present by adopting standard procedures (Khandelwal, 2010).

QUANTITATIVE PHYTOCHEMICAL ANALYSIS

The total phenolic content, total flavonoid content, *in vitro* antioxidant and anticancer activities were carried out with slight modifications to the referenced procedures.

Total Phenolic Content

The total phenolic content of the experimental samples was determined using the Folin-Ciocalteau’s method (Oliveira et al., 2012). The intensity of blue colour formed due to the polyphenol content in different concentrations (10 - 1000 μg/mL) of experimental samples was measured at 760 nm using UV-Visible spectrophotometer. Various concentrations (10-100 μg/mL) of gallic acid were used to plot the standard curve. The total phenolic content of EEBF and its biofractions were expressed as mg of GAE/g of samples.

Total Flavonoid content

The total flavonoid content of the experimental samples was estimated using the aluminum chloride colorimetry method (Meda et al., 2005). The reactions of varying concentrations (10 - 1000 μg/mL) of experimental samples were analyzed at an absorbance of 415nm using a UV-VIS spectrophotometer. The standard graph was plotted with a series of concentrations (10-100 μg/mL) of quercetin on the X-axis and absorbance on the Y-axis. The total flavonoid content of EEBF and its biofractions was determined from the standard graph and expressed as mg of QUE equivalents/g of samples.

In vitro antioxidant activity

The *in vitro* antioxidant activity of the selected experimental samples (EEBF, TFBF, EFBF and MFBF) was measured using the DPPH, hydrogen peroxide and nitric oxide radical scavenging
methods.

DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay

The radical scavenging assay of the selected samples was studied using DPPH free radicals (Chanda and Dave, 2009). The absorbances of the reaction mixtures that consisted of 1 mL of DPPH in methanol (0.3 mM), 1 mL of varying concentrations of experimental samples (10 - 1000 μg/mL) or standard drug Ascorbic acid (2 - 20 μg/mL) and 1 mL of methanol, was measured at 517 nm using a UV-Visible spectrophotometer, after incubation for 30 min in the dark, at room temperature. The percentage of DPPH scavenged was calculated by using the formula,

\[
\% \text{ DPPH scavenged} = \left(\frac{\text{Absorbance of control} - \text{Absorbance of sample}}{\text{Absorbance of control}} \right) \times 100
\]

Hydrogen peroxide radical scavenging assay

In this assay, the reaction mixture consisted of 0.3mL of ferrous ammonium sulfate (1 mM), different concentrations of experimental samples (10 - 100 μg/mL) or standard drug Gallic acid (10 - 100 μg/mL), 0.1 mL of hydrogen peroxide (5 mM) and 1.5 mL of 1,10-phenanthroline (1mM) (Mukhopadhyay et al., 2016). After appropriate incubation, the absorbance of the reaction mixture was analysed at a wavelength of 510 nm using a UV-Visible spectrophotometer. The percentage of hydrogen peroxide free radical scavenged was calculated by using the formula

\[
\% \text{ H}_2\text{O}_2 \text{ scavenged} = \left(\frac{\text{Absorbance of sample}}{\text{Absorbance of control}} \right) \times 100
\]

Nitric oxide radical scavenging (NO) assay

The amount of nitric oxide free radical scavenged by the treatment groups was determined (Boora et al., 2014). The absorbance of the reaction mixtures that consisted of 1mL of sodium nitroprusside solution with 1 mL of different concentrations of experimental samples (10 - 1000 μg/mL) or standard drug Gallic acid (10 - 100 μg/mL), incubated in the dark at 25°C for 180 min, successively treated with 2mL of freshly prepared Griess reagent and further incubated for 20 min was measured using a UV-Visible spectrophotometer at a wavelength of 540 nm.

The percentage of free radical nitric oxide scavenged was calculated by using the formula,

\[
\% \text{ Nitric Oxide scavenged} = \left(\frac{\text{Absorbance of control} - \text{Absorbance of sample}}{\text{Absorbance of control}} \right) \times 100
\]

In vitro anticancer activity

The in vitro anticancer activity of the experimental samples was determined using SRB assay (Lopez et al., 2018; Skehan et al., 1990; Vichai and Kittikara, 2006). RPMI 1640 media containing 10% fetal bovine serum along with 2mM L-glutamine were used to grow the MCF-7 cell lines, which were further inoculated into 96 well microtiter plates in 100 μL at plating densities of 1x10⁶ cells/well and incubated at 37°C, 5% CO₂, 95% air and 100% relative humidity for 24 h before addition of experimental samples (EEBF and its biofractions) or standard drug Adriamycin. Standard drug and experimental samples were solubilized in dimethyl sulfoxide at 100mg/mL and diluted with water. Varying concentrations of 10 μg/mL, 20 μg/mL, 40 μg/mL and 80 μg/mL of each experimental sample or standard drug were added to the microtiter wells and incubated at 37°C for 48 h. The assay was concluded by addition of cold trichloroacetic acid. About 50μL of trichloroacetic acid (30%w/v) was added to fix the cells in situ and incubated at 4°C for 60 min. After incubation, cells were washed, air-dried and stained with sulforhodamine B (SRB) for 20 mins and then washed with 1% acetic acid to remove excess stain. Tris buffer (10 mmol/L) was used to dissolve the bound sulforhodamine B and absorbance was measured on a plate reader at a wavelength of 540 nm. The average absorbance of test and control well was calculated and the percentage growth of MCF-7 cells was expressed using the formula,

\[
\% \text{ growth} = \left(\frac{\text{Absorbance of test well}}{\text{Absorbance of control wells}} \right) \times 100
\]

Statistical analysis

Analyses were performed in triplicate observations and recorded. Data was documented as mean value ± standard deviation (SD). Calculation of IC₅₀ and GI₅₀ values were done using GraphPad Prism version 7.3. Statistical analysis was done using IBM® SPSS version 23.0 statistical software (IBM Corporation, New York, USA). One way Analysis of Variance (ANOVA) was used to measure statistical significance along with Duncan’s multiple test (P <0.05 for antioxidant activity and <0.001 for anticancer activity).

RESULTS

Preliminary phytochemical analysis

The ethanolic leaf extract of *B. foveolata* (EEBF) and its experimental biofractions have confirmed the presence of alkaloids, flavonoids, tannins and phenolic compounds. Steroids and triterpenoids were present in EEBF and its toluene biofraction (Table 1).
Table 1: Preliminary phytochemical analysis of ethanolic leaf extract of *B. foveolata* and its biofractions.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Phytochemical constituents</th>
<th>EEBF</th>
<th>TFBF</th>
<th>EBF</th>
<th>MFBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Alkaloids</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>2.</td>
<td>Glycosides</td>
<td>+ve</td>
<td>-ve</td>
<td>-ve</td>
<td>+ve</td>
</tr>
<tr>
<td>3.</td>
<td>Saponins</td>
<td>+ve</td>
<td>-ve</td>
<td>-ve</td>
<td>+ve</td>
</tr>
<tr>
<td>4.</td>
<td>Carbohydrates</td>
<td>+ve</td>
<td>-ve</td>
<td>-ve</td>
<td>+ve</td>
</tr>
<tr>
<td>5.</td>
<td>Flavanoids</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>6.</td>
<td>Proteins</td>
<td>+ve</td>
<td>-ve</td>
<td>-ve</td>
<td>+ve</td>
</tr>
<tr>
<td>7.</td>
<td>Tannins and Phenolics</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
<td>+ve</td>
</tr>
<tr>
<td>8.</td>
<td>Resins</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>9.</td>
<td>Steroids And Triterpenoids</td>
<td>+ve</td>
<td>+ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>10.</td>
<td>Starch</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
</tbody>
</table>

Where -ve indicates absent, +ve indicates present.

Table 2: Total phenolic content by Folin-ciocalteu method and Total flavonoid content by aluminum chloride method.

<table>
<thead>
<tr>
<th>Method</th>
<th>EEBF</th>
<th>TFBF</th>
<th>EBF</th>
<th>MFBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total phenolic content (mg GAE/g)</td>
<td>49.12 ± 0.31</td>
<td>3.27 ± 0.35</td>
<td>21.01 ± 0.35</td>
<td>25.65 ± 0.21</td>
</tr>
<tr>
<td>Total flavonoid content (mg QUE/g)</td>
<td>28.75 ± 0.42</td>
<td>1.14 ± 0.28</td>
<td>11.12 ± 0.46</td>
<td>14.83 ± 0.31</td>
</tr>
</tbody>
</table>

Each value is expressed as mean ± SD (n=3).

Table 3: In vitro antioxidant activity - DPPH, hydrogen peroxide and nitric oxide free radical scavenging activity.

<table>
<thead>
<tr>
<th>Free radical scavenging assay</th>
<th>IC50 values (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>DPPH</td>
<td>12.06 ± 0.05b</td>
</tr>
<tr>
<td>H2O2</td>
<td>76.60 ± 1.31</td>
</tr>
<tr>
<td>NO</td>
<td>64.65 ± 0.72</td>
</tr>
</tbody>
</table>

Each value is articulated as the mean ± SD (n=3). Within each row, the means with different superscript letters are statistically significant (ANOVA, P<0.05, and subsequent post hoc multiple comparisons with Duncan's test).

Table 4: In vitro anticancer activity on human breast cancer cell line MCF-7

<table>
<thead>
<tr>
<th>Experimental sample/standard</th>
<th>% Control Growth of MCF-7 cell lines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 µg/mL</td>
</tr>
<tr>
<td>EEBF</td>
<td>92.2 ± 3.59b</td>
</tr>
<tr>
<td>TFBF</td>
<td>88.9 ± 9.13b</td>
</tr>
<tr>
<td>EBF</td>
<td>93.5 ± 5.70b</td>
</tr>
<tr>
<td>MFBF</td>
<td>104.7 ± 3.89b</td>
</tr>
<tr>
<td>Standard (Adriamycin)</td>
<td>-61.2 ± 5.26a</td>
</tr>
</tbody>
</table>

Each value is expressed as the mean ± SD (n=3). Within each column, the means with different superscript letters are statistically significant (ANOVA, P<0.001, and subsequent post hoc multiple comparisons with Duncan's test).
Estimation of the total phenolic and total flavonoid content

The ethanolic leaf extract of *B. foveolata* (EEBF) has reported the highest phenolic and flavonoid content, followed by its methanolic biofraction, as depicted in Table 2.

Determination of in vitro free radical scavenging activity

The results of the *in vitro* free radical scavenging activities performed using DPPH, hydrogen peroxide and nitric oxide free radicals have been listed in Table 3. IC$_{50}$ value indicates the concentration of the sample, at which 50% of the free radicals are scavenged.

Determination of in vitro anticancer activity

The percent growth control of MCF-7 breast cancer cells observed with the selected experimental samples and standard drug Adriamycin by sulforhodamine B (SRB) assay, have been noted in Table 4. The morphological characteristics of MCF-7 breast cancer cells when treated with 80µg/mL of standard drug Adriamycin and each experimental sample have been illustrated in Figure 2.

DISCUSSION

Antioxidants are beneficial in reducing oxidative damage to cells and improving an individual’s quality of life by preventing or postponing the onset of degenerative diseases like cancer, cardiovascular disease, neural disorders, Alzheimer’s disease, mild cognitive impairment and Parkinson’s disease (Alam *et al.*, 2013). Oxidative damage to cells may be attributed to the presence of free radicals and antioxidants limit this damage by donating electrons to free radicals and neutralizing them (Lalhminghluil and Jagetia, 2018). Endogenous and exogenous antioxidants play an important role in preventing oxidative stress (Bouayed and Bohn, 2010). Plants, vegetables and fruits have been known to be a source of exogenous antioxidants that include phenolics, carotenoids, anthocyanins and tocopherols (Altemimi *et al.*, 2017; Kasote *et al.*, 2015).

The preliminary phytochemical investigations of

Figure 2: Morphology of (a) control and (b-f) treatment groups of standard and experimental samples at a concentration of 80µg/mL against MCF7 breast cancer cells.
the experimental samples of ethanolic leaf extracts of B. foveolata Dalzell. (EEBF) and its biofractions viz. TFBF, EBF and MFBF revealed the presence of various phytoconstituents. Naturally occurring polyphenolics have gained popularity due to the high antioxidant, anti-inflammatory and anti-carcinogenic potential that help reduce the risk of life-threatening diseases (Zakaria et al., 2011). Flavonoids, tannins and phenolic compounds exhibit antioxidant activity mainly due to their redox properties, since they behave as reducing agents, hydrogen donating agents or singlet oxygen quenching agents (Medini et al., 2014; Patel et al., 2011). Folin ciocalteu method and aluminum chloride method were used to quantitatively estimate the phenolic and flavonoid contents, respectively. EEBF showed the maximum phenolic content and flavonoid content as compared to its biofractions. In vitro antioxidant activity was assessed using three radicals viz. DPPH (2,2-diphenyl-1-picrylhydrazyl), hydrogen peroxide and nitric oxide. A lower IC\textsubscript{50} value indicates higher scavenging ability of the extract and hence better antioxidant activity (Brighente et al., 2007). DPPH, hydrogen peroxide and nitric oxide free radical scavenging assays were selected as the models to study the in vitro antioxidant activity of the ethanolic leaf extract and biofractions of B. foveolata Dalzell, as they are ideal methods to screen natural products (Alam et al., 2013; Parul et al., 2013). EEBF has exhibited significant \((p<0.05)\) antioxidant potential in DPPH and nitric oxide radical scavenging methods. Interestingly, the methanolic biofraction (MFBF) displayed significant in vitro antioxidant potential in hydrogen peroxide free radical scavenging assay. The antioxidant activity of EEBF and MFBF may thus be attributed to the presence of phenolics and flavonoids.

The anticancer properties of natural foods are possibly due to the additive and synergistic effects of various phytochemicals (Mates et al., 2011). Steroids have the potential to act as cytostatic (antiproliferative) and cytotoxic anticancer agents. Steroidal hormones like estrogen, progesterone and androgen play a crucial role in developing secondary sexual characteristics in females and males. Breast cancer and other steroidal hormone related carcinogenesis mainly occur due to accelerated cell proliferation. Steroidal anticancer drugs act as antihormonal antiproliferative through enzyme inhibition (steroid sulfatase inhibitors, aromatase inhibitors (Al), hydroxysteroid dehydrogenase inhibitors) or receptor inhibition (antiestrogens, antiprogestins). Their cytotoxic action is mainly exhibited by naturally occurring or semisynthetic compounds through non-hormonal targets (Gupta et al., 2013). Natural triterpenes have proved to possess anti-oxidative, anticancer and chemopreventive effects and show cytotoxicity against tumor cells with low activity towards normal cells (Chudzik et al., 2015).

In vitro anticancer activity was assessed by sulforhodamine B (SRB) assay, using MCF-7 breast cancer cell lines. Amongst the experimental samples subjected to in vitro anticancer activity, TFBF showed satisfactory growth inhibition of MCF-7 cells at GI\textsubscript{50}=73.5+11.96 \textmu g/mL. TFBF was found to be substantially rich in steroids and triterpenoids. Thus, the antiproliferative property of TFBF could be attributed to the presence of steroids, triterpenoids that may also have synergetic effects with other phytoconstituents present.

CONCLUSIONS

The study effectively concludes that the ethanolic leaf extract of B. foveolata Dalzell. (EEBF) and its methanolic biofraction (MFBF) have encouraging antioxidant activity as EEBF substantially scavenged DPPH and nitric oxide, while MFBF considerably neutralized hydrogen peroxide free radicals in vitro. Notably, the toluene biofraction effectively inhibited the growth of MCF-7 human breast cancer cells in sulforhodamine B assay, thus demonstrating its antiproliferative potential against breast cancer. However, further phytochemical and pharmacological investigation of EEBF and its biofractions are desirable to determine the active compounds and deduce their mechanisms of action.

ACKNOWLEDGEMENT

The contributors are thankful to Anticancer drug screening facility (ACDSF), Advanced Centre for Treatment, Research & Education in Cancer, (ACTREC) at Tata Memorial Centre, Navi Mumbai, India, for carrying out the in vitro anticancer activity. The contributors are also grateful to Dr. Satyanarayanan S. Hebbar for the authentication of the tree leaf sample and the Principal of Goa College of Pharmacy, Government of Goa, for providing the facilities to perform the research.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

Funding Support

The authors declare that they have no funding support for this study.
REFERENCES

