Original Article

International Journal of Research in Pharmaceutical Sciences
Published by JK Welfare & Pharmascope Foundation
Journal Home Page: www.pharmascope.org/ijrps

Antifungal activity of hydroalcoholic extract of *Cynodon dactylon* against dermatophytes

Puneet Sudan¹, Manish Goswami², Jitender Singh²

¹Chandigarh College of Pharmacy (Landran)-Mohali-Punjab-140307 and Research Scholar at UIPS, Chandigarh University, Gharuan, India
²UIPS-Chandigarh University (Gharuan), Mohali, Punjab, India

Article History:
Received on: 10.08.2019
Revised on: 15.11.2019
Accepted on: 20.11.2019

Keywords:
Antifungal, *Cynodon dactylon*, Epidermophyton floccosum, hydroalcoholic, *Microsporum gypseum*, *Trichophyton rubrum*

ABSTRACT

Plant-derived antifungal agents will always remain as an area of interest for researchers to overcome the issues pertaining to resistance and harmful adverse effects associated with synthetic drugs. *Cynodon dactylon* is a well-known plant that grows wildly and used for the treatment of many diseases like wounds, warts, cramps, measles, and also tumors. This research was done as, to date, no scientific evidence was accessible concerning the antifungal potential of the hydroalcoholic extract of the whole plant. In the present work, the antifungal potential of hydroalcoholic extract of *Cynodon dactylon* was evaluated against *Trichophyton rubrum*, *Epidermophyton floccosum*, and *Microsporum gypseum*. The antifungal potential was evaluated by means of the agar well diffusion method. The diameter of the clear inhibition zone around the well was measured. The hydroalcoholic extract of *Cynodon dactylon* had promising antifungal potential against all the tested fungal strains. Finally, it can be concluded from the calculated findings that hydroalcoholic extract of the whole plant of *Cynodon dactylon* may be considered as a promising antifungal herbal plant and can be exploited as a great herbal resistance-free source for the treatment of various fungal infections.

*Corresponding Author
Name: Puneet Sudan
Phone: 9855937822
Email: cgc.ccp.ps@gmail.com

ISSN: 0975-7538
DOI: https://doi.org/10.26452/ijrps.v11i1.1784

Production and Hosted by Pharmascope.org © 2020 | All rights reserved.

INTRODUCTION

With the increased number of incidences of chemotherapeutic failure and antibiotic resistance by several synthetic antifungal agents, antifungal evaluation of medicinal and traditional plants has become the area of interest for new researchers. Plant-derived active constituents have an added advantage of being less toxic in comparison to several synthetic agents. (Colombo, 1996; Dabur et al., 2008). Also, in accordance with WHO, plant-derived drugs have served as a primary healthcare need for an estimate of ~80% of the world population. (Arumugam et al., 2014)

Cynodon dactylon (L) belonging to the Poaceae family is one of the most commonly occurring wildly growing weeds, which are hardy, perennial, creepy grass finding a wide distribution around the globe particularly in tropical areas and warm temperature. *Cynodon dactylon* is also known as arugampullu (Tamil), garikoithalli (Kanarese), haritali (Sanskrit), durua (Marathi), garikagoddi (Telugu), durba (Bengali), and dubhkhhabbal (Punjabi) in various regional languages. The weed is fast-growing, drought-resistant, very tough, and light green with a coarse texture and is found in short cylindrical pieces of 2-4 mm in diameter and 3-20 mm long (Chandel and Kumar, 2015). *Cynodon dactyl-
lon is known for its antiseptic, analgesic, anti-inflammatory, wound healing, astrigent, antioxidant, immunomodulatory, ant diabetic, and anticancer activities (Ashokkumar et al., 2013; Kanimozi et al., 2012). Till date, many researchers in their research had already proved that Butanol, Ethanol, and Methanol extracts of Cynodon dactylon leaves showed promising results as potent antifungal agents against a wide range of bacteria (Chaudhari et al., 2011; Singh and Gupta, 2008). The present scenario depicts that no detailed proofs of scientific data are available regarding the therapeutic and medicinal efficiency of hydroalcoholic extract of the whole plant of Cynodon dactylon. Proofs of herbal drug potential related to the antifungal efficacy of this plant are negligible in the Indian scenario. Therefore, the present research work was carried out to display the antifungal potential of hydroalcoholic extract of Cynodon dactylon.

MATERIALS AND METHODS

In the present research work, wildly growing common weeds of Cynodon dactylon, which was readily available, have been utilized to find out antifungal efficacy against the dreadful keratinophilic fungus namely Trichophyton rubrum, Epidermophyton floccosum, Microsporum gyipseum. Cynodon dactylon was procured locally from wild areas of Chandigarh, identified, and proper herbarium sheets are submitted with Pharmacognosy Department, Chandigarh College of Pharmacy-Landran (Mohali). Fungal strain Trichophyton rubrum with MTCC no. 3272, Epidermophyton floccosum with MTCC no. 7880, Microsporum gyipseum with MTCC no. 2829 were procured from IMTECH Sector-39, Chandigarh. To extraction procedure was carried out by firstly washing the whole plant material of Cynodon dactylon. It was dried in the shade and was pulverized with the help of an electric grinder. 10 grams of powdered form of Cynodon dactylon was subjected to maceration for about 48 hours with 60 ml water and 40 ml ethanol (hydroalcoholic extract 60:40). Then, filtration of the extract was carried out with the help of filter paper or double-layered muslin cloth. The obtained filtered hydroalcoholic extract was exploited for the evaluation of antifungal potential.

Assessment of antifungal potential

The antifungal activity of hydroalcoholic plant extracts on mycelial growth was studied in the in-vitro condition on Sabouraud Glucose Agar medium (SGA). The culture media was supplemented with appropriate concentrations of hydroalcoholic plant extracts and was poured into the petriplates. These petriplates were inoculated with a mycelial disc of about 5 mm diameter from the margins of 8-10 day old colony and raised on SGA. SGA without plant extract served as control. The inoculated plates were finally incubated at a temperature of 28±20°C for about seven days. The diameter of the colony was measured 7th day.

RESULTS AND DISCUSSION

Antifungal potential of hydroalcoholic extract of Cynodon dactylon at two different concentrations (1000 µg/ml and 750 µg/ml) was evaluated against Epidermophyton floccosum, Microsporum gyipseum, and Trichophyton rubrum. The antifungal activity of different concentrations of methanol extract of C. dactylon is described in Table 1. Figure 1 shows the inhibition zone diameters for different fungal strains. Two different concentrations of hydroalcoholic extracts of Cynodon dactylon showed promising results and good efficacy against all the selected fungal strains. At 1000 µg/ml concentration, it exhibits maximum efficacy Epidermophyton floccosum, Microsporum gyipseum with 19 mm, and 16 mm diameters of zone of inhibition, respectively.

![Figure 1: Antifungal activity of Hydroalcoholic extract of C. dactylon.](image)

In the present study, it was found that hydroalcoholic extract of Cynodon dactylon at two concentrations of 1000 µg/ml and 750 µg/ml, had showed promising results and good efficacy against all the selected fungal strains but results were very effective against Epidermophyton floccosum and Microsporum gyipseum at a concentration of 1000 µg/ml. Promising results are due to the presence of active principles such as polar compounds like saponins, which makes it an effective antimicrobial drug (Singh and Gupta, 2008). Previous studies on an ethanol extract of C. dactylon have demonstrated antifungal activity attributed due to the presence of triterpenoid saponin (Li et al., 1999). However, after a vigor-
Table 1: Antifungal activity of Hydroalcoholic extract of C.dactylon with Zone of inhibition in mm.

<table>
<thead>
<tr>
<th>Tested Fungi</th>
<th>Concentration (µg/ml) and Zone of Inhibition (mm)</th>
<th>Antibiotic-1mg/ml (Griseofulvin)</th>
<th>Hydroalcoholic Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000µg/ml</td>
<td>750µg/ml</td>
<td></td>
</tr>
<tr>
<td>Epidermophyton floccosum</td>
<td>19</td>
<td>12</td>
<td>45</td>
</tr>
<tr>
<td>Microsporum gypseum</td>
<td>16</td>
<td>15</td>
<td>46</td>
</tr>
<tr>
<td>Trichophyton rubrum</td>
<td>14</td>
<td>10</td>
<td>44</td>
</tr>
</tbody>
</table>

CONCLUSION

Hydroalcoholic extract of leaves of Cynodon dactylon possess significant antifungal activities, particularly against Trichophyton rubrum, Epidermophyton floccosum, and Microsporum gypseum respectively and may serve to play a vital role in ethnomedical practice. The activity of Cynodon dactylon may be due to the presence of active constituents present in it, which can further be utilized to formulate various formulations against dermatophyte infections.

REFERENCES

Chandel, E., Kumar, B. 2015. Antimicrobial activity and phytochemical analysis of Cynodon dactylon: A review. World Journal Pharmaceutical Sciences,