Main Article Content


The autonomic nervous system (ANS) innervates the entire neuraxis and influences the functions of all organs. This study was undertaken for evaluating the autonomic dysfunction in diabetic patients using clinical autonomic tests and neuro- electrophysiology. A prospective study was carried out in 66 patients with type II diabetes mellitus in a tertiary care hospital for one year. Systemic examination, necessary investigations, nerve conduction study and clinical testing for the autonomic nervous system were done. The results were noted and analyzed. 65.2% were females, whereas 34.8% were males. Mean duration of diabetes was found to be 9.06 years (SD 4.121). 80.3% population was known to have type 2 diabetes for 5-10 years duration, 13.6% had diabetes for 10-15 years, and only 3.5% had diabetes for more than 15 years. Mean FBS was found to be 196.12(mg/dl) ±77.180 SD and mean PPBS was 303.26(mg/dl) ± 115.385 SD. Mean HbA1c levels were 10.95 ± 2.36 SD. 33.3% showed early parasympathetic involvement for cardiac autonomic neuropathy, 9% had definite parasympathetic involvement, and only 6% had both parasympathetic and sympathetic involvement. 62.12% showed abnormal responses in nerve conduction study, of which 48.78% had autonomic dysfunction. The main factor responsible for the development and progression of autonomic dysfunction is poor glycaemic status. If contributing factors can be detected, early identification of cardiac autonomic neuropathy (CAN) and appropriate management would halt its progression. Aggressive glycaemic monitoring and treatment shall bring down the progression and prolong the time interval in showing abnormal responses in autonomic function testing.


Diabetes mellitus (DM) Autonomic nervous system (ANS) cardiac autonomic neuropathy (CAN) Diabetic autonomic neuropathy (DAN)

Article Details

How to Cite
Sharath shanmugam, Oshin mantro, Jagadeesan M, Mariraj I, Prasanna Karthik S, Gowrishankar, Magesh Kumar, & Vinoth Kanna S. (2021). A Study On Assessment Of Autonomic Nervous System Function In Patients With Type 2 Diabetes Mellitus. International Journal of Research in Pharmaceutical Sciences, 12(1), 699-702.