Main Article Content

Abstract

Nanoemulsions have the potential in medical industries due to transparency at high droplet volume division, higher bio availability rate and expanded shelf life of drugs. The “Nano emulsion-based gel" is a very interesting transdermal delivery framework as it has double delivery control framework, i.e., nano emulsion & hydrogel. The Nano emulgel having nanosized emulsion goes from 10-100μm may quickly enter and convey dynamic substance more profound and faster. The gelling limit of this compound permits the definition of stable emulsion and creams by diminishing surface and interfacial pressure simultaneously expanding the consistency of watery stage. Regardless of the many preferred position of gels, a significant restriction is in delivery of hydrophobic medication. So to defeat this constraint, an emulsion-based methodology is being utilized to that even a hydrophobic moiety might appreciate exceptional property of gel. They have clingy causing distress, less spreading coefficient, scouring is a requirement for application to the skin, and they show the issue of solidness for detailing. Due to all these disadvantages, gels are selected for both cosmetic as well as a pharmaceutical formulation. Despite several benefits of gels, the main drawback is with the delivery of hydrophobic therapeutic moiety. So, emulgel based approach is used to overcome this drawback; by this, even a hydrophobic drug might be included and delivered successfully. When emulsions and gels are mixed than that dosage form is mentioned as emulgel. In fact, the existence of a gelling agent changes conventional emulsion into an emulgel in the water phase. 

Keywords

Nanoemulsion emulgel Nanoemulgel drug delivery framework

Article Details

How to Cite
Ramesh K, Venkateswara Rao J, Srinivasan M.K., & Sravanathi P. (2020). Recent Analysis on new Nanoemulgel Transdermal Drug Delivery System use for Skin Disease Treatment. International Journal of Research in Pharmaceutical Sciences, 11(SPL4), 859-865. https://doi.org/10.26452/ijrps.v11iSPL4.4086