Influence of polymeric precipitation inhibitors on dissolution behaviour of Meloxicam

Karnati V Chandana¹, Gowda DV*¹, Vishal Gupta N¹, Praveen Sivadasu¹, Manjunath M²

¹Department of Pharmaceutics, JSS College of Pharmacy, Sri Shivarahmeshwara Nagar, Mysuru, JSS Academy of Higher Education and Research, JSS Medical Institutions Campus, Sri Shivarahmeshwara Nagar, Mysuru – 570015, Karnataka, India
²Department of Pharmaceutics, Farooqia College of Pharmacy, Mysuru – 570015, Karnataka, India

Article History:
Received on: 06.04.2018
Revised on: 18.07.2018
Accepted on: 21.07.2018

Keywords:
Polymeric precipitation inhibitors, HPMC, Meloxicam, Solid dispersions, Rheumatoid Arthritis

ABSTRACT

The scope of this study was to analyse the effect of polymeric precipitation inhibitor on in-vitro dissolution of Meloxicam which is a weak acid, water-insoluble and a crystalline compound. Meloxicam is used to treat pain or inflammation caused by rheumatoid arthritis. HPMC was used as polymeric precipitation inhibitor. Solvent evaporation method was employed to formulate solid dispersions with and without polymeric precipitation inhibitor. IR spectra suggested that there were no interactions between drug and polymers used in the study. DSC thermograms indicated that the drug was completely miscible with the molten carrier. Amorphization of the drug in the solid dispersion was established by a reduction in the enthalpy of drug melting in solid dispersion versus pure drug. The drug crystallinity in the solid dispersion was found to be reduced from X-ray Diffraction analysis. SEM analysis showed that Meloxicam exhibited irregular crystals, but the surface morphology of solid dispersions was smooth. Formulated solid dispersions showed increased solubility than the pure drug. Meloxicam solid dispersions with HPMC exhibited less precipitation rate compared to the Meloxicam solid dispersions without HPMC. Increase in the dissolution was attributed to the decrease in crystallinity of the drug and inhibition of drug precipitation. Thus, dissolution of Meloxicam can be enhanced by formulating solid dispersion using polymeric precipitation inhibitors.

INTRODUCTION

Rheumatoid arthritis is a chronic inflammatory multi-system disorder with characteristic features like a pain in the joints, stiffness, swelling and involvement of multiple systems. The aetiology of rheumatoid arthritis described by a combination of three factors: A moderate deficiency of cortisol, deficiency of dehydro-epi-androsterone (DHEA) and infection caused by micro-organisms like mycoplasma, leading to inflammation and destruction of tissue in periarticular and articular areas of immune-compromised hosts (Morissette SL et al., 2004). The following strategies can be employed to treat arthritis; Early aggressive treatment; Tight control of RA. Non-steroidal anti-inflammatory drugs (NSAIDs), offered as non-prescription (OTC) or by prescription can be used to help ease arthritis pain and inflammation. Corticosteroids, anti-rheumatic drugs, Biologics, JAK inhibitors etc., are the drugs that slow disease activity (Trask AV 2007).

In recent times, supersaturation based drug delivery has to receive attraction as it improves the solubility of lipophilic molecules. Supersaturation is a
state where the concentration of solute is greater when compared with equilibrium solubility of the solution (Brouwers et al., 2009). Though there are various supersaturated systems, solid dispersion is the most widely studied system. To develop any supersaturated drug delivery the main obstacle is to maintain the solution at high energy supersaturated state, for a certain period preventing precipitation (Vandecruys et al., 2007). Supersaturation can be maintained by inhibiting either nucleation or crystal growth, in order to maintain the supersaturation precipitation inhibitors were generally included which are polymers that avoid precipitation in solution and crystallization in solids (Raghavan SL et al., 2001). Both in solid or solution state mobility of molecules, drug’s tendency to recrystallize and polymer-drug reactions plays a prominent role in inhibition of precipitation in a supersaturated system (Chauhan H et al., 2014). PVP and HPMC have shown great potential in inhibiting the precipitation and increasing the solubility of the drug. Introducing these polymers within solid dispersions or lipid-based formulations can help in sustaining supersaturation of the drug in the vehicle after dispersion, improving its variability in exposure and bioavailability (Good D et al., 2010).

Meloxicam is an oxicam derivative and an enolic acid type of non-steroidal anti-inflammatory drug, approved by the US Food and Drug Administration for use in rheumatoid arthritis and osteoarthritis. Meloxicam has a selective COX-2 inhibitory effect, which is expected to have lesser GI toxicity as in contrast to non-selective NSAIDs. From the clinical trials, it was found that 7.5-15 mg/day of meloxicam was not only similar in efficacy when compared to current standard anti-inflammatory and analgesic drugs like Diclofenac, Piroxicam and Naproxen but also was associated with few GI adverse effects. Additionally, Meloxicam was reported to show side effects such as digestive tract upset, liver toxicity and Breathing problems (Aoki T et al., 2006)

MATERIALS AND METHODS

Materials

Meloxicam was purchased from Mysore Drug House and General Store, Bengaluru. Hydroxypropylmethylcellulose (HPMC) was purchased from LOBA Pharmaceuticals, Mumbai. Sorbitol was purchased from Merck specialities private limited, Mumbai. Chloroform was purchased from Merck specialities private limited, Mumbai.

Methods

Formulation of Meloxicam Loaded Solid Dispersions

Formulation of Meloxicam loaded solid dispersions with and without polymeric precipitation inhibitors was done by solvent evaporation method. Accurately 80mg of Meloxicam was weighed and dissolved in 20ml of chloroform and then varying quantities of HPMC (polymer precipitation inhibitor) was added to the drug solution. The solution was dissolved and allowed to evaporate at room temperature, the resultant residue was further dried, and solid dispersions were stored in a desiccator until use. Different compositions of Meloxicam solid dispersion done by solvent evaporation are depicted in Table 1.

Characterization of Meloxicam in Solid Dispersion

Fourier Transform Infrared Spectroscopy (FTIR)

About 2mg of pure drug and prepared solid dispersion were acquired for FTIR analysis. Pure drug and formulated solid dispersions were dispersed in KBr powder and pellets were prepared by applying 4 tons of pressure and FT-IR spectra were recorded (Patel DD et al., 2011).

Differential Scanning Calorimetry

1mg of meloxicam was crimped in aluminium pans using crimper and heated under nitrogen flow (20ml/min) at a scanning rate of 10˚C min⁻1, from 100’ - 300˚C. An empty aluminium pan was used as a reference to obtain the peaks (Patel DD et al., 2011).

Degree of Crystallinity

The heat diffusion of the drug in the formulated solid dispersion was done by measuring the peak area of the obtained endotherm. In order to calculate the % crystallinity of the loaded drug in solid dispersion ratio between fusion, energies were considered and calculated using the following equation (Ghosh I et al., 2011)

Scanning Electron Microscopy

The SEM analysis was carried out using Hitachi Noran System 7 manufactured by Thermo Fischer Scientific. The photographs were acquired to identify and validate the nature and morphological characteristics of solid dispersions (Patel DD et al., 2011).

Evaluation of Solid Dispersion

Drug Content

10mg of meloxicam was accurately weighed and dissolved in 50ml of 0.1N HCl and stirred well. Absorbance was measured at 228 nm for the diluted and filtered solutions to estimate the drug content by following equation (Takatsuka T et al., 2009).
%Drug content = Concentration (μg/ml) × Dil. Factor × 100 / 50

Solubility Studies

The solubility of Meloxicam was carried out in distilled water. Excess of Meloxicam was added to 10ml distilled water in the volumetric flask. Samples were shaken well and the saturated solutions after 24hrs were filtered through Whatman filter paper no.1. Filtrates were suitably diluted and used to determine Meloxicam concentration spectrophotometrically at 228nm (Takatsuka T et al., 2009).

Turbidity Measurement and in-vitro precipitation studies

Nephelometer is an instrument which calculates the amount of light scattered when a sample is introduced in turn indicating number of particles present in a sample. 3ml of the supersaturated solution was mixed with 30ml of FaSSGF and was introduced into nephelometer (Systronics 131) and signals were recorded periodically (Takatsuka T et al., 2009).

In - vitro dissolution studies

In-vitro dissolution studies for formulated solid dispersions was done using USP-XXIV Type – II paddle dissolution test apparatus. The solid dispersions equivalent to 80mg of Meloxicam were placed in dissolution container holding 900ml of 0.1N HCl as dissolution medium (pH 1.2 at 37°C±0.5°C and stirred at 100 rpm. A sample of 5 ml was withdrawn intermittently and an equal amount of fresh dissolution medium was replaced to maintain sink conditions. After filtration through Whatman filter paper, Meloxicam was estimated spectrophotometrically at 228nm with suitable dilutions (Masanori Ochi et al., 2014).

RESULTS AND DISCUSSION

Characterization of Meloxicam in Solid Dispersion

Fourier transform Infrared spectroscopy (FTIR)

The FT-IR spectra of Meloxicam and formulated solid dispersions were studied for the compatibility and possibility of non-covalent interactions. As shown in Figure 1 there was no significant shift observed in the positions of featured peaks of Meloxicam as well as carriers. Hence, it can be inferred that the drug and carriers are chemically compatible and can be incorporated together in the formulation.

Differential Scanning Calorimetry (DSC)

From Figure 2, it was evident that both Meloxicam and Meloxicam loaded solid dispersion had shown an endothermic peak at 171.83°C. Thermogram of Pure Meloxicam showed a sharp endothermic peak at 171.83°C corresponding to its melting point, indicating the crystalline nature of the drug. Thermogram of Meloxicam loaded solid dispersion had shown a reduction in intensities suggesting amorphization of crystalline drug in drug-carrier systems.

Thermogravimetric analysis (TGA)

Thermogravimetric analysis (TGA) analysis of the drug and its solid dispersions showed the mass loss due to moisture content of the drug and its solid dispersions. The mass loss was found to be 0.45% for Meloxicam alone and 0.42% for Meloxicam loaded solid dispersion.

The **degree of Crystallinity -X-Ray Diffraction analysis (XRD)**

Pure Meloxicam showed sharp and intense peaks of crystallinity at a diffraction angle of 2θ of 10.67, 15.05, 16.805, 17.1, 18.195, 20.97 and 22.21 indicating the crystalline nature of the drug. The XRD patterns of the formulations exhibited a reduction in intensity of peaks (SDS-204 to 620 and SDH-151 to 538) compared to Meloxicam alone. SDH formulations found more significantly useful in the reduction of crystalline characteristics of the drug (RDC ranging from 0.0832 to 0.296) than SDS (RDC ranging from 0.112 to 0.341). The Relative Degree of Crystallinity by XRD study was shown in Table 2. The XRD spectra of Meloxicam and its solid dispersions (SD1, SD 2, SD 3, SD 4, SD 5 and SD 6) was depicted in Figure 3.
Table 1: Formulation of meloxicam solid dispersion by solvent evaporation method

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Meloxicam (mg)</th>
<th>Hydroxypropyl methylcellulose Ratio</th>
<th>Hydroxypropyl methylcellulose (mg)</th>
<th>Chloroform (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDH1</td>
<td>80</td>
<td>1:0.5</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>SDH2</td>
<td>80</td>
<td>1:0.75</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>SDH3</td>
<td>80</td>
<td>1:1</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>SDH4</td>
<td>80</td>
<td>1:1.25</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>SDH5</td>
<td>80</td>
<td>1:1.5</td>
<td>120</td>
<td>20</td>
</tr>
<tr>
<td>SDH6</td>
<td>80</td>
<td>1:1.75</td>
<td>140</td>
<td>20</td>
</tr>
<tr>
<td>SDH7</td>
<td>80</td>
<td>1:2</td>
<td>160</td>
<td>20</td>
</tr>
<tr>
<td>SDH8</td>
<td>80</td>
<td>1:2.25</td>
<td>180</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2: Relative Degree of Crystallinity by XRD study

<table>
<thead>
<tr>
<th>Sample</th>
<th>Angle 2θ</th>
<th>Peak intensity (count)</th>
<th>RDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meloxicam</td>
<td>10.775</td>
<td>1229</td>
<td>1.0000</td>
</tr>
<tr>
<td>SDS 1</td>
<td>10.90</td>
<td>634</td>
<td>0.3515</td>
</tr>
<tr>
<td>SDS 2</td>
<td>10.630</td>
<td>343</td>
<td>0.1866</td>
</tr>
<tr>
<td>SDS 3</td>
<td>10.620</td>
<td>320</td>
<td>0.1738</td>
</tr>
<tr>
<td>SDS 4</td>
<td>10.570</td>
<td>299</td>
<td>0.1619</td>
</tr>
<tr>
<td>SDS 5</td>
<td>10.670</td>
<td>268</td>
<td>0.1399</td>
</tr>
<tr>
<td>SDS 6</td>
<td>10.580</td>
<td>203</td>
<td>0.1024</td>
</tr>
</tbody>
</table>

Table 3: Drug content with and without polymeric precipitation inhibitor

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Drug content (%w/w) with polymeric precipitation inhibitor</th>
<th>Formulation code</th>
<th>Drug content (%w/w) without polymeric precipitation inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDH 1</td>
<td>98.12</td>
<td>SDS 1</td>
<td>98.23</td>
</tr>
<tr>
<td>SDH 2</td>
<td>99.18</td>
<td>SDS 2</td>
<td>98.91</td>
</tr>
<tr>
<td>SDH 3</td>
<td>99.43</td>
<td>SDS 3</td>
<td>98.44</td>
</tr>
<tr>
<td>SDH 4</td>
<td>99.58</td>
<td>SDS 4</td>
<td>99.19</td>
</tr>
<tr>
<td>SDH 5</td>
<td>97.0</td>
<td>SDS 5</td>
<td>98.91</td>
</tr>
<tr>
<td>SDH 6</td>
<td>99.94</td>
<td>SDS 6</td>
<td>100.11</td>
</tr>
<tr>
<td>SDH 7</td>
<td>98.45</td>
<td>SDS 7</td>
<td>98.39</td>
</tr>
<tr>
<td>SDH 8</td>
<td>96.39</td>
<td>SDS 8</td>
<td>99.18</td>
</tr>
</tbody>
</table>

SEM of Meloxicam loaded solid dispersion

To identify the morphology of the pure drug and the solid dispersions prepared with and without polymeric precipitation inhibitor by solvent evaporation method the Scanning Electron Microscopy (SEM) was done. As depicted in Figure 4a & 4b prepared solid dispersion was smooth and the pure drug appeared as irregular crystals.

![Figure 3: XRD spectra of meloxicam and its solid dispersions (SD 1, SD 2, SD 3, SD 4, SD 5 and SD 6)](image)

![Figure 4: a) SEM image of Pure Meloxicam; (b) SEM image of meloxicam with HPMC](image)
Evaluation of Solid Dispersions

Drug Content

The drug content in prepared solid dispersions was ranging from 97.03 to 100.3 % (w/w), complying with IP limits. Meloxicam content in the prepared solid dispersions were shown in Table 3. The highest drug content with polymeric precipitation inhibitor(99.94%) was found in solid dispersion SDH 6 and lowest drug content(96.39%) was found in solid dispersion SDH 8. The highest drug content without polymeric precipitation inhibitor(100.11%) was found in solid dispersion SDS 6 and lowest drug content(98.23%) was found in solid dispersion SDS 1.

Solubility Studies

Solubility studies were performed for the pure drug and the prepared solid dispersions. Solid dispersions with HPMC exhibited maximum solubility as compared to other solid dispersions as shown in Figure 5(a) and Figure 5(b). SDH 8 exhibited less solubility compared to the SDS 8 due to an increase in the concentration of precipitation inhibitor HPMC.

Turbidity Measurement and in-vitro precipitation studies

The drug precipitation in the medium was monitored by measuring the turbidity using a nephelometer. Turbidity measurement determines the amount of light scattered by particles in a sample. By using the nephelometer, signal versus time data was acquired and the signal provides a measure of the amount of the precipitate present in the solution. The comparison of the degree of drug precipitation with and without polymeric precipitation inhibitors in the prepared Meloxicam solid dispersions are shown in Figure 6a and 6b. From the results, it can be inferred that as the concentration of HPMC increases there was a reduction in precipitation of the loaded Meloxicam.
The authors express their gratitude to the JSS Academy of Higher Education and Research and JSS College of Pharmacy, Mysuru for providing necessary support in due course of the work.

Conflict of Interest
The author confirms that this article content has no conflict of interest.

REFERENCES

Takatsuka T, Endo T, Jianguo Y, Yuminoki K, Hashimoto N. Nanosizing of poorly water-soluble...
