Prevalence of Vitamin D Deficiency in Primary School Children with Developmental Coordination Disorder (DCD)

Ganapathy Sankar U*1, Monisha R1, Christopher Amalraj Vallaba Doss2, Palanivel R M3

1SRM College of Occupational therapy, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
2College of Medicine, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
3Deanship of Quality and Academic Accreditation, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia

ABSTRACT

The majority of mothers and caregivers of children with DCD were not aware of vitamin D deficiency and its relations to cardiovascular abnormalities and many other non-skeletal abnormalities. It is well known that skeletal muscle integrity and metabolism are boosted by sunray vitamin and Young women's and children were the victims of vitamin D deficiency. Vitamin D oral supplementation is under routine practice in a western country. However, it has been frequently documented in studies, but there are limited data on the prevalence of Vitamin D deficiency among children with DCD in the Indian population. The study aims to find out the prevalence of vitamin D deficiency in children with DCD in primary schools. 20 children with DCD underwent physical examination on the blood test and physical activity assessments. (50%) were vitamin D deficient (serum 25OHD level), of whom 4% were severely vitamin D deficient and physical activity were significant independent predictors of hypovitaminosis D. Indian mothers of children with DCD were having poor perception regarding their child's green land play and they constrain the children's towards academic activities. Thus they were at higher risk of osteoporosis and osteopenia as there is a higher prevalence of vitamin D deficiency encountered in children with DCD.

INTRODUCTION

Vitamin D is otherwise best known as the sunshine vitamin and its best source is from sunrays. In order to maintain metabolism and skeletal muscle integrity, there should be adequate vitamins and minerals. Vitamin D helps to boost immunity (American Psychiatric Association, 1994; Ganapathy Sankar U, Monisha R, 2018, 2019). There are innumerable health benefits from vitamin D. In spite of its health benefits, the majority of children and adults were deficient towards Vitamin D. when children with DCD were examined, the characteristics of the disorder make the child prone for Vitamin D deficiency. Developmental coordination disorder will affect the activities of daily living and those children will avoid peer group interaction and be isolated. Thus they avoid playing outdoor. Children with DCD were isolated because of isolation; they were more prone to be affected because of psychi-
Limited research has been done to examine the impact of lack of physical activity in green land in terms of blood parameters. There is a tremendous need to examine the mineral and vitamin level of children with DCD as like the assessment of participation level in academics and physical activity (Ganapathy Shankar U, 2019). Physical and occupational therapists have to advertize the caregivers about the importance of vitamin D and what are the sources of vitamin D. They have to be insisted on the need for physical activity participation with peer groups in green land (Ganapathy Shankar U, 2018). Mothers of children with DCD need to be educated regarding DCD and its prevalence worldwide. Vitamin D deficiency triggers osteopenia and osteoporosis, thus maintaining the standardized level as specified by the medical standards will help to maintain skeletal muscle integrity and maximize the functions of immune system regulation among adults and children with DCD. Vitamin D2 and D3 are the variants of vitamin D complex. Vitamin D3 helps in bone metabolism and it's the most active form (Ganapathy Shankar U, Monisha R, 2019; Boonen et al., 2006; R, 1995).

Dr. Ganapathy Shankar, in his research on Life Impact of Developmental Coordination Disorder: Qualitative Analysis, he described that personal interview sessions with parents revealed that these children experience a serious psychiatric illness as a result of incompetence in performing everyday activities. Avoided by the same age peers in playing will have a greater impact on Childs psychological state. Isolation and loneliness make the child psychologically ill and he/she keeps themselves inside the home and avoids participation in physical activity sessions and also avoids academic activities. This home-bound will make the child prone to vitamin D deficiency (Witham et al., 2010; Forman et al., 2007; Dobnig, 2008).

When Indian children with DCD were examined, they were confounded by so many factors. The mother’s perspectives will have a greater impact on the child. The caregiver’s lack of knowledge in understanding the advantages of physical activity makes the children homebound and makes them less prone to sunlight. Indian mothers want their child with DCD to get better in academics rather in motor coordination (Wang et al., 2008; Giovannucci, 2008; Black and Scragg, 2005). Their perception of the child's activity is wrong. Thus there is a tremendous need for enhancing the knowledge regarding the DCD and the importance of physical activity in green land as an indirect facilitator of vitamin D absorption (Janssens et al., 2010).

MATERIALS AND METHODS

This study adopted a cross-sectional study-survey design. The survey was conducted by Door to door interview and diagnosis was confirmed using the Developmental Coordination Disorder Questionnaire. A hundred Children (n=100) were initially recruited in the study. Both genders were included children age 5-10 years were included and this study was carried over by the primary author Dr. Ganapathy Shankar over a similar geographical area in an entirely different time frame. The time frame which study has been conducted is 2011 after 9 years; again, in 2019, the prevalence estimate has been calculated, but with the primary objective of this current research is to examine the vitamin D deficiency in children with DCD.

The Developmental Coordination Disorder Questionnaire (DCDQ) will assess the coordination difficulty existed by the children and it concludes whether the children were suspect or not a suspect of DCD (Stephenson et al., 2007; Wolfenden et al., 2008; V, 2006). Parents were instructed to fill in their child's engagement in motor activity using a Likert scale. This questionnaire follows a standardized methodology to evaluate the child's coordination in ADL. It has 15 divisions, which analyzes three identical factors. The first factor includes a number of items specific to motor control when the child was in a dynamic environment, or while an object was in motion, and is labeled "Control during Movement." The second factor analyzes the "Fine Motor and Handwriting" skill and the third factor analyzes the "General Coordination." To complete the questionnaire, it takes 10-15 minutes. Data collection procedure was done by explaining the purpose of the study to panchayat union officers and data is collected about a number of children with DCD at each house at Kancheepuram. Door to door survey was done and consent forms were obtained. The study involves analyzing the vitamin D status for the children with DCD, the procedure has been explained in the information sheet and submitted to the parents. The Developmental Coordination Disorder Questionnaire (DCDQ) was circulated and requested to be filled properly by the concerned parents. The primary investigator explains the DCDQ in detail and clarifies their doubts (Ferrari et al., 2011; Wilkinson et al., 2000). Data was collected for further analysis.

RESULTS AND DISCUSSION

Twenty children with DCD (n=20) participated. The age range was 5 to 10 years (Table 1). Serum lev-
Table 1: The prevalence of vitamin D deficiency in children with Developmental Coordination Disorder (DCD) among the age group of 10 years at Kattankulathur

<table>
<thead>
<tr>
<th>S.No</th>
<th>Age</th>
<th>Total Sample</th>
<th>Number of Children with Vitamin D Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5-5.11</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6-6.11</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>7-7.11</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>8-8.11</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>9-9.11</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>5-10 Years</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Results revealed that 7.5% were screened as having Vitamin D deficiency in 2019. Still, in India, Ganapathy Sankar & Saritha reported that the prevalence of DCD is 1.26% at Kattankulathur, Tamilnadu, by the year 2011. The current study findings concluded that DCD children were also considered to have Vitamin D deficiency and the prevalence rate is increased. Further study is recommended to be conducted in other geographical areas of India.

CONCLUSIONS

The current study found that the prevalence rate is 7.5%. Awareness program and screening program on vitamin D and B12 needs to be conducted periodically in primary school for the early identification of DCD.

ACKNOWLEDGEMENT

I pay my sincere thanks to the chancellor of the SRM Institute of Science and Technology. I express my sincere thanks to Director, Medical & Health Sciences SRM Institute of Science and Technology and extends thanks to all the participants who have been the real pillars of this study. Last but not least, I thank all of them whose names have inadvertently failed my memory and who, in their unique way, have made this project a reality.

REFERENCES

American Psychiatric Association 1994. Diagnostic and statistical manual of mental disorders


